Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of the regular solution model in the condensation of protoplanetary dust

Identifieur interne : 006306 ( Main/Exploration ); précédent : 006305; suivant : 006307

The effect of the regular solution model in the condensation of protoplanetary dust

Auteurs : F. C. Pignatale [Australie] ; S. T. Maddison [Australie, France] ; V. Taquet [Australie, France] ; G. Brooks [Australie] ; K. Liffman [Australie]

Source :

RBID : ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128

Descripteurs français

English descriptors

Abstract

We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.

Url:
DOI: 10.1111/j.1365-2966.2011.18555.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2011.18555.x</idno>
<idno type="url">https://api.istex.fr/document/2A1170F20766901277FE3DCC9E2F285727B41128/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000815</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000815</idno>
<idno type="wicri:Area/Istex/Curation">000815</idno>
<idno type="wicri:Area/Istex/Checkpoint">000725</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000725</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Pignatale F:the:effect:of</idno>
<idno type="wicri:Area/Main/Merge">006682</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:11-0292146</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B67</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004377</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001579</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001579</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Pignatale F:the:effect:of</idno>
<idno type="wicri:Area/Main/Merge">006A30</idno>
<idno type="wicri:Area/Main/Curation">006306</idno>
<idno type="wicri:Area/Main/Exploration">006306</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The effect of the regular solution model in the condensation of protoplanetary dust</title>
<author>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122</wicri:regionArea>
<wicri:noRegion>VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122</wicri:regionArea>
<wicri:noRegion>VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122</wicri:regionArea>
<wicri:noRegion>VIC 3122</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Magistere de Physique Fondamentale d’Orsay, Universite Paris‐11</wicri:regionArea>
<wicri:noRegion>Universite Paris‐11</wicri:noRegion>
<wicri:noRegion>Universite Paris‐11</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122</wicri:regionArea>
<wicri:noRegion>VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO/MSE, PO Box 56, Heighett, VIC 3190</wicri:regionArea>
<wicri:noRegion>VIC 3190</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">414</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="2386">2386</biblScope>
<biblScope unit="page" to="2405">2405</biblScope>
<biblScope unit="page-count">20</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-07-01">2011-07-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abundance</term>
<term>Activity data</term>
<term>Akermanite</term>
<term>Albite</term>
<term>Allende prieto</term>
<term>Anorthite</term>
<term>Behaviour</term>
<term>Bottom panel</term>
<term>Byerley takebe</term>
<term>Caal2</term>
<term>Caal2 sio6</term>
<term>Chemical equilibrium</term>
<term>Chondrite</term>
<term>Circumstellar matter</term>
<term>Compound</term>
<term>Condensation</term>
<term>Condensation processes</term>
<term>Condensation sequence</term>
<term>Condensation sequences</term>
<term>Condensation temperature</term>
<term>Condensation temperatures</term>
<term>Constant ratio</term>
<term>Corundum</term>
<term>Dehoff</term>
<term>Different values</term>
<term>Diopside</term>
<term>Disc</term>
<term>Dullemond</term>
<term>Energy minimization</term>
<term>Energy minimization method</term>
<term>Enstatite</term>
<term>Entire range</term>
<term>Entire temperature range</term>
<term>Experimental data</term>
<term>Fassaite</term>
<term>Fayalite</term>
<term>Feal2</term>
<term>Ferrosilite</term>
<term>Fesio3</term>
<term>Fitting polynomials</term>
<term>Forsterite</term>
<term>Full list</term>
<term>Gail</term>
<term>Gehlenite</term>
<term>Geochimica cosmochimica acta</term>
<term>Gibbs free energy</term>
<term>Good agreement</term>
<term>Grossman</term>
<term>Hibonite</term>
<term>High temperature</term>
<term>High temperatures</term>
<term>Ideal behaviour</term>
<term>Ideal solution</term>
<term>Ideal solution model</term>
<term>Ideal solution models</term>
<term>Initial composition</term>
<term>Kmol</term>
<term>Large range</term>
<term>Liquid phase</term>
<term>Low temperature</term>
<term>Lower limit</term>
<term>Lower temperature</term>
<term>Lower temperatures</term>
<term>Magnesiowustite</term>
<term>Maximum amount</term>
<term>Meeus</term>
<term>Melilite</term>
<term>Melilite phase</term>
<term>Metallurgical materials trans</term>
<term>Mgal2</term>
<term>Mgsio3</term>
<term>Middle panel</term>
<term>Minimization</term>
<term>Mnras</term>
<term>Models</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Monthly notices</term>
<term>Nafziger</term>
<term>Nafziger muan</term>
<term>Olivine</term>
<term>Olivine phase</term>
<term>Olivine species</term>
<term>Pasek</term>
<term>Physical chemistry</term>
<term>Pignatale</term>
<term>Plagioclase</term>
<term>Plagioclase solution</term>
<term>Pollack</term>
<term>Pressure decreases</term>
<term>Previous work</term>
<term>Previous works</term>
<term>Protoplanetary</term>
<term>Protoplanetary disc</term>
<term>Protoplanetary disc phase</term>
<term>Protoplanetary discs</term>
<term>Protoplanetary dust</term>
<term>Protoplanetary dust figure</term>
<term>Pyroxene</term>
<term>Reaction rates</term>
<term>Reference temperature</term>
<term>Regular solution</term>
<term>Regular solution model</term>
<term>Results show</term>
<term>Silicate</term>
<term>Simulation</term>
<term>Sio2</term>
<term>Sio4</term>
<term>Solar system</term>
<term>Solid phases</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Solid species</term>
<term>Solution behaviour</term>
<term>Spinel</term>
<term>Stable compound</term>
<term>Sulphide</term>
<term>Supplemental calculator</term>
<term>Temperature range</term>
<term>Thermodynamic</term>
<term>Thermodynamics</term>
<term>Total number</term>
<term>Troilite</term>
<term>Vapor condensation</term>
<term>Warmer region</term>
<term>Xcat</term>
<term>Yoneda</term>
<term>Yoneda grossman</term>
<term>Young stars</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Abondance</term>
<term>Basse température</term>
<term>Condensation</term>
<term>Energie libre Gibbs</term>
<term>Equilibre chimique</term>
<term>Haute température</term>
<term>Matière circumstellaire</term>
<term>Modèle</term>
<term>Solution régulière</term>
<term>Thermodynamique</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activity data</term>
<term>Akermanite</term>
<term>Albite</term>
<term>Allende prieto</term>
<term>Anorthite</term>
<term>Behaviour</term>
<term>Bottom panel</term>
<term>Byerley takebe</term>
<term>Caal2</term>
<term>Caal2 sio6</term>
<term>Chondrite</term>
<term>Compound</term>
<term>Condensation</term>
<term>Condensation processes</term>
<term>Condensation sequence</term>
<term>Condensation sequences</term>
<term>Condensation temperature</term>
<term>Condensation temperatures</term>
<term>Constant ratio</term>
<term>Corundum</term>
<term>Dehoff</term>
<term>Different values</term>
<term>Diopside</term>
<term>Disc</term>
<term>Dullemond</term>
<term>Energy minimization</term>
<term>Energy minimization method</term>
<term>Enstatite</term>
<term>Entire range</term>
<term>Entire temperature range</term>
<term>Experimental data</term>
<term>Fassaite</term>
<term>Fayalite</term>
<term>Feal2</term>
<term>Ferrosilite</term>
<term>Fesio3</term>
<term>Fitting polynomials</term>
<term>Forsterite</term>
<term>Full list</term>
<term>Gail</term>
<term>Gehlenite</term>
<term>Geochimica cosmochimica acta</term>
<term>Good agreement</term>
<term>Grossman</term>
<term>Hibonite</term>
<term>High temperature</term>
<term>High temperatures</term>
<term>Ideal behaviour</term>
<term>Ideal solution</term>
<term>Ideal solution model</term>
<term>Ideal solution models</term>
<term>Initial composition</term>
<term>Kmol</term>
<term>Large range</term>
<term>Liquid phase</term>
<term>Lower limit</term>
<term>Lower temperature</term>
<term>Lower temperatures</term>
<term>Magnesiowustite</term>
<term>Maximum amount</term>
<term>Meeus</term>
<term>Melilite</term>
<term>Melilite phase</term>
<term>Metallurgical materials trans</term>
<term>Mgal2</term>
<term>Mgsio3</term>
<term>Middle panel</term>
<term>Minimization</term>
<term>Mnras</term>
<term>Mole fraction</term>
<term>Mole fractions</term>
<term>Monthly notices</term>
<term>Nafziger</term>
<term>Nafziger muan</term>
<term>Olivine</term>
<term>Olivine phase</term>
<term>Olivine species</term>
<term>Pasek</term>
<term>Physical chemistry</term>
<term>Pignatale</term>
<term>Plagioclase</term>
<term>Plagioclase solution</term>
<term>Pollack</term>
<term>Pressure decreases</term>
<term>Previous work</term>
<term>Previous works</term>
<term>Protoplanetary</term>
<term>Protoplanetary disc</term>
<term>Protoplanetary disc phase</term>
<term>Protoplanetary discs</term>
<term>Protoplanetary dust</term>
<term>Protoplanetary dust figure</term>
<term>Pyroxene</term>
<term>Reaction rates</term>
<term>Reference temperature</term>
<term>Regular solution</term>
<term>Regular solution model</term>
<term>Results show</term>
<term>Silicate</term>
<term>Simulation</term>
<term>Sio2</term>
<term>Sio4</term>
<term>Solar system</term>
<term>Solid phases</term>
<term>Solid solution</term>
<term>Solid solutions</term>
<term>Solid species</term>
<term>Solution behaviour</term>
<term>Spinel</term>
<term>Stable compound</term>
<term>Sulphide</term>
<term>Supplemental calculator</term>
<term>Temperature range</term>
<term>Thermodynamic</term>
<term>Total number</term>
<term>Troilite</term>
<term>Warmer region</term>
<term>Xcat</term>
<term>Yoneda</term>
<term>Yoneda grossman</term>
<term>Young stars</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Condensation</term>
<term>Simulation</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high‐temperature region (T≥ 1400 K) hibonite and gehlenite dominate, and we find that the formation of corundum is sensitive to the pressure. The mid‐temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and that of enstatite are strictly related, and our simulations show a sequence of forsterite–enstatite–forsterite with decreasing temperature and the abundance of the first high‐temperature peak of forsterite is also pressure sensitive. In the low‐temperature regions (T≤ 600 K), a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low‐temperature region is sensitive to the solution model. In this same temperature region, fayalite is the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model and suggest that this model should provide a more realistic condensation sequence.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
</noRegion>
<name sortKey="Brooks, G" sort="Brooks, G" uniqKey="Brooks G" first="G." last="Brooks">G. Brooks</name>
<name sortKey="Liffman, K" sort="Liffman, K" uniqKey="Liffman K" first="K." last="Liffman">K. Liffman</name>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<name sortKey="Pignatale, F C" sort="Pignatale, F C" uniqKey="Pignatale F" first="F. C." last="Pignatale">F. C. Pignatale</name>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
</region>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
<name sortKey="Taquet, V" sort="Taquet, V" uniqKey="Taquet V" first="V." last="Taquet">V. Taquet</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006306 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006306 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2A1170F20766901277FE3DCC9E2F285727B41128
   |texte=   The effect of the regular solution model in the condensation of protoplanetary dust
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024